Abstract

Scalar-tensor theories (STTs) are a widely studied alternative to general relativity (GR) in which gravity is endowed with an additional scalar degree of freedom. Although severely constrained by solar system and pulsar timing experiments, there remains a large set of STTs which are consistent with all present day observations. In this paper, we investigate the possibility of probing a yet unconstrained region of the parameter space of STTs based on the fact that stability properties of highly compact neutron stars in these theories may radically differ from those in GR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.