Abstract

The possibility of measuring weak noise in nonlinear systems on the basis of the phenomenon of prebifurcation noise amplification is proposed. This phenomenon is shortly outlined with special emphasis on the transition from linear regime to the regime of nonlinear saturation of fluctuation amplification. Estimates of the fluctuation variance are obtained both for the linear (away from the bifurcation threshold) and for the nonlinear regime (in the vicinity of the bifurcation threshold). These estimates have proved to be efficient for two simple bifurcation models: period doubling bifurcation and bifurcation of spontaneous symmetry breaking. Theoretical estimates have proved to be in good agreement with the results of numerical simulation. It is shown, that in the saturation regime, fluctuation variance is proportional to the square root of external noise variance, whereas in linear regime, fluctuation variance is proportional to noise variance. The approach to weak noise measuring is based on comparison of maximal fluctuation variance at the bifurcation threshold with variance away from that threshold. The applicability of this approach is limited by the necessity to perform rather long-term observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call