Abstract

Laser welding is a modern, widely used but still not really common method of welding. With increasing demands on the quality of the welds, it is usual to apply automated machine welding and with on-line monitoring of the welding process. The resulting quality of the weld is largely affected by the behavior of keyhole. However, its direct observation during the welding process is practically impossible and it is necessary to use indirect methods. At ISI we have developed optical methods of monitoring the process. Most advanced is an analysis of radiation of laser-induced plasma plume forming in the keyhole where changes in the frequency of the plasma bursts are monitored and evaluated using Fourier and autocorrelation analysis. Another solution, robust and suitable for industry, is based on the observation of the keyhole inlet opening through a coaxial camera mounted in the welding head and the subsequent image processing by computer vision methods. A high-speed camera is used to understand the dynamics of the plasma plume. Through optical spectroscopy of the plume, we can study the excitation of elements in a material. It is also beneficial to monitor the gas flow of shielding gas using schlieren method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call