Abstract

Following systematic mathematical, theoretical and experimental studies on the synthesis of the neutron from hydrogen, R. M. Santilli noted delayed neutron detections following the termination of tests, and attempted to represent them with the hypothesis of a new state of the hydrogen with spin zero called neutroid consisting of a proton and an electron at 1 fm mutual distance in singlet coupling. More recently, Santilli predicted the possible existence of a second new particle called pseudo-proton characterized by the synthesis of the electron with the neutron, therefore resulting in a negatively charged unstable particle with a mean life expected in the range of that of the neutron and a mass of the order of the hydride ion. Subsequently, Santilli has indicated that, in the event confirmed, the pseudo-proton could eliminate the Coulomb barrier for nuclear syntheses and trigger nuclear transmutations with large release of heat without neutron emission, thus identifying a possible novel use of hydrogen for the industrial production of a basically new clean nuclear energy. In view of the latter possibility, in this paper specific experiments are proposed for the verification or denial of the existence of Santilli neutroid and pseudo-proton and, in case of confirmation, accurate measurements of their characteristics and production in numbers sufficient for industrial application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call