Abstract

This paper addresses the problem of aftercavity interaction in gyrotrons. The term “aftercavity interaction” is used for the cyclotron resonance interaction between electrons in a spent beam exiting the microwave cavity and traveling electromagnetic waves propagating from the cavity exit into the output part of a gyrotron. Aftercavity interaction may reduce the interaction efficiency by several percent and spoil the energy distribution of spent electrons, thus reducing the possibility of efficient utilization of depressed collectors. We have used a simple theory to find conditions resulting in the reduction of this effect. In particular, we have shown that both the axial waveguide wall profile and magnetic field distribution should be modified in order to weaken the effect of aftercavity interaction. We verified results of our simple analysis with advanced simulations and demonstrated that they are in good agreement. Result of these studies can be beneficial for the gyrotron efficiency enhancement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.