Abstract

AbstractPossibilities for increasing efficiency, simplifying the design of the energy conversion system, and reducing the probability of sodium/water interaction in liquid-metal reactors (LMRs) using liquid-metal magnetohydrodynamic (LMMHD) energy conversion technology are investigated. Of the six different LMMHD power conversion systems considered, the LMMHD Rankine steam cycle offers the highest efficiency—up to 15% greater than a conventional LMR. The LMMHD Ericsson gas cycles, on the other hand, offer a significantly simplified and compact LMR plant design. All the LMMHD power conversion systems eliminate the sodium/water interaction problem. In addition to commercial applications, LMMHD energy conversion technology opens interesting new possibilities for special terrestrial as well as space applications of LMRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.