Abstract

Abstract The main objective of this work is to research complex physical−chemical processes of Al(l)−SiO2 interface and develop a new technology for producing foundry silumins based on amorphous microsilica obtained from silicon production waste. Effective methods for producing hypoeutectic, eutectic, and hypereutectic silumins using amorphous microsilica were developed. Alloys with a silicon content of 7 wt.% were obtained by blowing preheated amorphous microsilica into the aluminum melt (t=900 °C) along with the stream of argon followed by intense mixing. Alloys with a silicon content of 21 wt.% were manufactured by induction melting of a silicon-containing mixture (60% SiO2, 40%Al + 20%3NaF·2AlF3) subjected to the presintering when the amorphous microsilica was reduced to crystalline silicon. It is found that crystalline silicon, which is formed during the roasting of the tableted burden, is smoothly absorbed by the aluminum melt. Aluminum oxide, obtained during the redox reaction, dissolves in cryolite, after which aluminum and silicon are fused together and transferred to the melt. The calculation of the economic efficiency of producing silumins using amorphous microsilica demonstrates a quick project payback period, as well as a high level of its profitability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.