Abstract
Fluid-solid systems play a major role in a wide variety of industries, from pharmaceutical and consumer goods to chemical plants and energy generation. Along with this variety of fields comes a diversity in apparatuses and applications, most prominently fluidized and spouted beds, granulators and mixers, pneumatic conveying, drying, agglomeration, coating, and combustion. The most promising approach for modeling the flow in these systems is the CFD-DEM method, coupling computational fluid dynamics (CFD) for the fluid phase and the discrete element method (DEM) for the particles. This article reviews the progress in modeling particle-fluid flows with the CFD-DEM method. A brief overview of the basic method as well as methodical extensions of it are given. Recent applications of this simulation approach to separation and classification units, fluidized beds for both particle formation and energy conversion, comminution units, filtration, and bioreactors are reviewed. Future trends are identified and discussed regarding their viability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual Review of Chemical and Biomolecular Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.