Abstract

In this work, two narrow-bore capillary columns with different internal diameters (I.D.) 0.15 mm (15 m length, 0.15 microm film thickness) and 0.10 mm (10 m length, 0.10 microm film thickness) with the same stationary phase (5% diphenyl 95% dimethylsiloxane), phase ratio and separation power were compared with regard to their advantages, practical limitations and applicability in fast GC on commercially available instrumentation. The column comparison concerns fast GC method development, speed and separation efficiency, the sample transfer into the column utilizing split and splitless inlet, sample capacity, detection (analysing compounds of a wide range of polarities and volatilities--even n-alkanes C16-C28 and selected pesticides) and ruggedness (in the field of ultratrace analysis of pesticide residues in real matrix). Under conditions corresponding to speed/separation efficiency trade-off 0.10 mm I.D. versus 0.15 mm I.D. column provides a speed gain of 1.74, but all other parameters investigated were better for the 0.15 mm I.D. column concerning more efficient sample transfer from inlet to the column using splitless injection, no discrimination with split injection. Better sample capacity (three times higher for the 0.15 mm than for the 0.10 mm I.D. column) resulted in improved ruggedness and simpler fast GC-MS method development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.