Abstract

In the proposed study, we synthesize a clickable polyhedral oligomeric silsesquioxane (POSS) carbon fiber coating to enhance the fiber-matrix interfacial properties using the highly selective “thiol-ene click” chemistry. The unique hybrid structure of POSS molecules creates a spring-like effect when strongly bound to a surface, resulting in a smooth load transfer across the interphase region, making it uniquely suited for use as a fiber surface treatment to develop damage-tolerant composite laminates. This is the first study to date that reports on the use of “thiol-ene click” chemistry to create a controlled POSS coating to enhance the interfacial properties between the fiber and matrix. Thiol-ene chemistry is the reaction between a thiol (-SH) group and alkene group, creating a bond between the two materials. PAN-based carbon fibers undergo a series of chemical modification resulting in thiolated-carbon fibers. Octavinyl-POSS is selectively “clicked” to the carbon fiber surface, creating a strongly bound uniform POSS coating. These POSS-coated carbon fibers can now be used as a prepreg for the manufacturing of composites for aerospace applications requiring enhanced composite strength and durability. The fiber-matrix adhesion is characterized using fragmentation tests to determine the interfacial shear strength. Meanwhile, the surface treatment chemistry is characterized using FTIR and XPS techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.