Abstract
The present study reports on the use of three types of polyhedral oligomeric silsesquioxanes (POSS) nanoparticles with various organic substituents as fillers in a fluoroelastomer (FKM). A series of/POSS elastomer composite thin films is prepared. Microstructural SEM/TEM (scanning electron microscopy/transmission electron microscopy) imaging reveals a dispersion state allowing the presence of micron-sized domains. The influence of POSS content is studied in order to optimize thermal stability and mechanical properties of the composite thin films. Both POSS-A (with an acryloyl functional group and seven isobutyl substituents) and POSS-P (with eight phenyl substituents) lead to higher thermal stability and modulus of the composites, with respect to the unfilled FKM terpolymer matrix. covalent grafting of POSS-A onto the FKM network is found to play a critical role. Enhanced storage modulus in the rubbery plateau region (+210% at 200 °C for 20 phr) suggests that POSS-A is particularly suitable for high temperature applications.
Highlights
Since their first use, fluoroelastomers (FKM) have become of great interest
Three polyhedral oligomeric silsesquioxanes (POSS) nanofillers have been incorporated in a FKM matrix
The nanocomposites were obtained as thin films
Summary
Fluoroelastomers (FKM) have become of great interest They are used for many applications in the building (as paints and coatings resistant to UV and graffiti), petrochemical and automotive industries, aerospace, and aeronautics (use of elastomers as seal, gasket or O-ring to be used in extreme temperatures for liquid hydrogen storage in space shuttles), chemical engineering (high-performance membranes), optics (core and cladding of optical fibers), and treatment of textiles [1]. Fluorinated FKM terpolymers consisting of vinylidene fluoride (VDF), hexafluoropropylene (HFP), and tetrafluoroethylene (TFE) monomer units can be either amorphous or semi-crystalline depending upon the monomers ratio [2] Their specificity consists of a unique combination of properties including good thermal aging, weather, and chemical resistances, low surface energy, low inflammability, and low moisture absorption [3,4]. These properties can be Materials 2018, 11, 1358; doi:10.3390/ma11081358 www.mdpi.com/journal/materials
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.