Abstract

A new hierarchical reinforcement was fabricated by growing ZnO nanowires (NWs) onto poly(p-phenylene benzobisoxazole) (PBO) fibers using a mild hydrothermal method, which served as a platform for the polyhedral oligomeric silsesquioxanes (POSS) grafting, using 3-aminopropyltrimethoxysilane (APTMS) as a bridging agent. Scanning electron microscopy (SEM) was employed to characterize the surface morphologies of PBO fibers and the de-bonding surface morphologies of their composites. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed the chemical bonding nature between ZnO NWs and APTMS, as well as between APTMS and POSS. The reinforcement offered a 83.4% enhancement in the interfacial shear strength (IFSS) without degrading the base fiber. Moreover, the possible interfacial property enhancing reasons were explored. The hydrothermal aging resistance of PBO/epoxy composites was also greatly improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.