Abstract

Oligonucleotide synthesis is vital for molecular experiments. Bioinformatics has been employed to create various algorithmic tools for the in vitro synthesis of nucleotides. The main approach to synthesizing long-chain DNA molecules involves linking short-chain oligonucleotides through ligase chain reaction (LCR) and polymerase chain reaction (PCR). Short-chain DNA molecules have low mutation rates, while LCR requires complementary interfaces at both ends of the two nucleic acid molecules or may alter the conformation of the nucleotide chain, leading to termination of amplification. Therefore, molecular melting temperature, length, and specificity must be considered during experimental design. POSoligo is a specialized offline tool for nucleotide fragment synthesis. It optimizes the oligonucleotide length and specificity based on input single-stranded DNA, producing multiple contiguous long strands (COS) and short patch strands (POS) with complementary ends. This process ensures free 5′- and 3′-ends during oligonucleotide synthesis, preventing secondary structure formation and ensuring specific binding between COS and POS without relying on stabilizing the complementary strands based on Tm values. POSoligo was used to synthesize the linear RBD sequence of SARS-CoV-2 using only one DNA strand, several POSs for LCR ligation, and two pairs of primers for PCR amplification in a time- and cost-effective manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.