Abstract

It has been suggested that 31P nuclear spins in Ca9(PO4)6 molecules could form the basis of a quantum mechanism for neural processing in the brain. A fundamental requirement of this proposal is that spins in different Ca9(PO4)6 molecules can become entangled and remain so for periods (estimated at many hours) that hugely exceed typical 31P spin relaxation times. Here, we consider the coherent and incoherent spin dynamics of Ca9(PO4)6 arising from dipolar and scalar spin-spin interactions and derive an upper bound of 37 min on the entanglement lifetime under idealized physiological conditions. We argue that the spin relaxation in Ca9(PO4)6 is likely to be much faster than this estimate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.