Abstract

New Ps spectroscopy measurements, formation of antihydrogen for antimatter-matter comparison experiments, production of Ps beams require the efficient production of cooled positronium in vacuum. At present the most efficient positron-positronium converters are silica based ordered or disordered porous materials, in which formed Ps decreases its kinetic energy by collisional cooling. Recently new positron-positronium converters based on oxidized nanochannels in silicon were found to be very promising because of the tunability of the nanochannel size, which allows to overcome the limits imposed to the Ps cooling by the quantum confinement. With these converters, Ps with temperatures as low as 150 K was detected in vacuum by a TOF apparatus. The Ps formation, quantum confinement, collisional cooling and emission into vacuum from nanochanneled silicon will be discussed in light of recent results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.