Abstract

The scattering of ortho-positronium (Ps) by H2 has been investigated using a three-Ps-state (Ps(1s, 2s, 2p)H2(X 1g+)) coupled-channel model and using the Born approximation for higher excitations and ionization of Ps and B 1u+ and b 3u+ excitations of H2. We employ a recently proposed time-reversal-symmetric non-local electron-exchange model potential. We present a calculational scheme for solving the body-frame fixed-nuclei coupled-channel scattering equations for Ps-H2, which simplifies the numerical solution technique considerably. Ps ionization is found to have the leading contribution to target-elastic and all target-inelastic processes. The total cross sections at low and medium energies are in good agreement with experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.