Abstract

The intense emission of 511 keV photons from the Galactic center and within terrestrial thunderstorms is attributed to the formation of parapositronia clouds. Unbound electron–positron pairs and positronia can be created by strong electromagnetic fields produced in interactions of electrically charged objects, in particular, in collisions of heavy nuclei. Kinematics of this process favors abundant creation of the unbound electron–positron pairs with very small masses and the confined parapositronia states which decay directly to two 511 keV quanta. Therefore, we propose to consider interactions of electromagnetic fields of colliding heavy ions as a source of low-mass pairs which can transform to 511 keV quanta. Intensity of their creation is enlarged by the factor Z4 (Z is the electric charge of a heavy ion) compared to protons with Z = 1. These processes are especially important at very high energies of nuclear collisions because their cross sections increase proportionally to cube of the logarithm of energy and can even exceed the cross sections of strong interactions which may not increase faster than the squared logarithm of energy. Moreover, production of extremely low-mass e+e−-pairs in ultraperipheral nuclear collisions is strongly enhanced due to the Sommerfeld-Gamow-Sakharov (SGS) factor which accounts for mutual Coulomb attraction of non-relativistic electrons to positrons in case of low pair-masses. This attraction may lead to their annihilation and, therefore, to the increased intensity of 511 keV photons. It is proposed to confront the obtained results to forthcoming experimental data at NICA collider.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.