Abstract

The clustering kinetics in quenched pure Al, binary Al–Mg and binary Al–Si alloys were studied by positron annihilation lifetime spectroscopy (PALS) and differential scanning calorimetry (DSC) during natural ageing (NA). Shortly after quenching, positrons annihilate either in the bulk material or in vacancy-type defects such as mono-vacancies (in Al) and vacancy–solute complexes (in Al–Mg and Al–Si alloys). Upon NA, vacancy clusters of various sizes and number densities are formed. In Al, such clusters contain typically 3 vacancies. In Al–Mg and Al–Si alloys, complexes containing various vacancies and also solute atoms are formed. The presence of shallow positron traps was detected in temperature-dependent positron lifetime experiments. They were identified as quenched-in dislocations rather than Mg or Si clusters as no solute clustering signal during NA was observed in DSC runs of the binary Al–Mg and Al–Si alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.