Abstract
The most obvious symmetry breaking in Nature is the left-right asymmetry of living beings: sugars and amino acids are almost exclusively represented by one of their stereoisomers (D-isomer for sugars and L-isomer for amino acids) at the expense of other possible isomers. In our experiment we studied the aqueous solutions of tartaric acid, alanine, and cysteine in the function of temperature by positron lifetime spectroscopy. The results were compared with those obtained in pure water under similar conditions. We always observed a sharp minimum of the positron lifetime at around 41 °C in water and in the solutions of the natural stereo-isomers. On the other hand, the same minimum occurred at considerably lower temperatures in the solutions of the “unnatural” isomers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Radioanalytical and Nuclear Chemistry Articles
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.