Abstract

A volume imaging positron emission tomography (PET) scanner with a large acceptance angle, such as the PENN-PET, offers fine spatial sampling and resolution in three dimensions, and a high sensitivity because of the inclusion of all cross-plane rays. The signal-to-noise ratio (SNR) is used to evaluate image quality for different scanning conditions of the PENN-PET using an activated cylindrical phantom with cold spheres of various sizes. Raising the energy threshold to 400 keV improves the SNR by lowering the scatter fraction, though it also reduces the sensitivity. Increasing the axial acceptance angle from +/-1.3 degrees to +/-6.5 degrees improves the SNR by increasing the sensitivity, even with a two-dimensional reconstruction algorithm, which compromises spatial resolution in the axial direction for points at the edge of the radial field of view. Initial results show that a three-dimensional reconstruction offers an improved SNR over a two-dimensional reconstruction that does not use all cross-plane rays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.