Abstract

Within the past few years, experiments have been reported in which antiprotons produced at the CERN Antiproton Decelerator facility were slowed, trapped in nested Penning traps and made to interact with a positron plasma such that antihydrogen was formed. Classical trajectory simulations of the interactions between the antiprotons and positrons have been reported to indicate that positive-energy, quasibound states of antihydrogen can form at a rate that exceeds the rate of formation of stable Rydberg states. The formation of quasibound states may affect the rate of diffusion of positrons across the magnetic field that confines them in the nested Penning trap. Simulations indicate that a binary interaction associated with the formation and disintegration of a quasibound state can cause a shift of the positron’s guiding center that is much larger than the positron cyclotron radius before the interaction. A theory is presented that describes positron cross-magnetic-field diffusion due to quasibound states of antihydrogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.