Abstract

Positron beam and 2D-ACAR investigation of cubic and coated diamonds are reported. In type IIA diamonds, positrons are mostly trapped in vacancies in the carbon lattice; in type Ia diamonds, two main defect-related annihilation sites are nitrogen-vacancy complexes (H2, H3) and the vicinity of split interstitial atoms. No correlation between principal nitrogen defects and annihilation rate was found. PAS data indicate the presence of a significant amount of vacancies in all studied diamonds, which increases the rate of nitrogen aggregation. It is shown that pressurised fluid inclusions may serve as a positron trap, giving rise to the long component in the lifetime spectra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.