Abstract

Vacancies and vacancy clusters in Ni, Cu, and Fe induced by high- and low-speed deformations are studied systematically by positron annihilation techniques and are compared with those induced by the conventional-rolling. To clarify the nature of the defects, the experimental results are compared with our superimposed-atomic-charge calculations of the positron lifetimes in the vacancy clusters as a function of their size. It is found that the deformation-induced defects in the fcc and bcc metals are significantly distinct. In the fcc metals of Ni and Cu, monovacancies with high number densities are induced by the high- and low-speed deformations and by heavy conventional-rolling (>10% in Ni and >40% in Cu). Vacancy clusters are observed after the high- and low-speed deformation for Ni and after the conventional-rolling for Cu. On the contrary, dislocations and vacancy clusters are introduced in bcc Fe regardless of the type or degree of deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.