Abstract

Atomic scale point defects play important roles in tuning the carrier concentration and ultimately influencing electrical and thermal properties. Herein, we fabricated the ternary Sb2Te3−xSex alloys to study the intimate relationship of internal point defects and thermoelectric performance. The Se substitution of Te atoms in the Sb2Te3 lattice decreased the electrical conductivity from 2.2 × 105 S/m to 6.4 × 104 S/m owing to the reduced holes concentration. The declined point defects, including antisite defects and vacancies in materials, gave rise to the decrease in carrier concentration. The Seebeck coefficient of the ternary Sb2Te3−xSex exhibited an increase with doping of Se atoms. Simultaneously, the thermal conductivity behaved a fallihg trend as well as increasing Se content. As a result, the ZT value reached the maximum from the corresponding Sb2Te2.9Se0.1 pellet. Positron annihilation measurement revealed that the average positron lifetime showed a monotonic decrease with Se addition, demonstrating the reduced point defects, which was in agreement with the thermoelectric performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call