Abstract

Defect structure of hydrogenated amorphous silicon thin-films was studied by positron annihilation spectroscopy (PAS), whereas the density of states below the Fermi level was measured by constant photocurrent method (CPM). Divacancies and large vacancy clusters were identified as the main defects present in these films, with relative concentrations strongly dependent on the rf-power. Correlation between PAS, CPM results and I( V) characteristics of solar cells suggests the creation of energy levels above the Fermi energy, not observable by CPM, related to large vacancy clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.