Abstract

We design nonstandard finite difference (NSFD) schemes which are unconditionally dynamically consistent with respect to the positivity property of solutions of cross-diffusion equations in biosciences. This settles a problem that was open for quite some time. The study is done in the setting of three concrete and highly relevant cross-diffusion systems regarding tumor growth, convective predator–prey pursuit and evasion model and reaction–diffusion–chemotaxis model. It is shown that NSFD schemes used for classical reaction–diffusion equations, such as the Fisher equation, for which the solutions enjoy the positivity property, are not appropriate for cross-diffusion systems. The reliable NSFD schemes are therefore obtained by considering a suitable implementation on the cross-diffusive term of Mickens’ rule of nonlocal approximation of nonlinear terms, apart from his rule of complex denominator function of discrete derivatives. We provide numerical experiments that support the theory as well as the power of the NSFD schemes over the standard ones. In the case of the cancer growth model, we demonstrate computationally that our NSFD schemes replicate the property of traveling wave solutions of developing shocks observed in Marchant et al. (2000).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.