Abstract
In this work, we present a positivity-preserving adaptive filtering approach for discontinuous spectral element approximations of the ideal magnetohydrodynamics equations. This approach combines the entropy filtering method (Dzanic and Witherden, 2022) for shock capturing in gas dynamics along with the eight-wave method for enforcing a divergence-free magnetic field. Due to the inclusion of non-conservative source terms, an operator-splitting approach is introduced to ensure that the positivity and entropy constraints remain satisfied by the discrete solution. Furthermore, a computationally efficient algorithm for solving the optimization process for this nonlinear filtering approach is presented. The resulting scheme can robustly resolve strong discontinuities on general unstructured grids without tunable parameters while recovering high-order accuracy for smooth solutions. The efficacy of the scheme is shown in numerical experiments on various problems including extremely magnetized blast waves and three-dimensional magnetohydrodynamic instabilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.