Abstract

Abstract In previous work, we have introduced δ-forms on the Berkovich analytification of an algebraic variety in order to study smooth or formal metrics via their associated Chern δ-forms. In this paper, we investigate positivity properties of δ-forms and δ-currents. This leads to various plurisubharmonicity notions for continuous metrics on line bundles. In the case of a formal metric, we show that many of these positivity notions are equivalent to Zhang’s semipositivity. For piecewise smooth metrics, we prove that plurisubharmonicity can be tested on tropical charts in terms of convex geometry. We apply this to smooth metrics, to canonical metrics on abelian varieties and to toric metrics on toric varieties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.