Abstract

The quadrature-based method of moments (QMOM) offers a promising class of approximation techniques for reducing kinetic equations to fluid equations that are valid beyond thermodynamic equilibrium. In this work, we study a particular five-moment variant of QMOM known as HyQMOM and establish that this system is moment-invertible over a convex region in solution space. We then develop a high-order discontinuous Galerkin (DG) scheme for solving the resulting fluid system. The scheme is based on a predictor–corrector approach, where the prediction is a localized space-time DG scheme. The nonlinear algebraic system in this prediction is solved using a Picard iteration. The correction is a straightforward explicit update based on the time-integral of the evolution equation, where the space-time prediction replaces all instances of the exact solution. In the absence of limiters, the high-order scheme does not guarantee that solutions remain in the convex set over which HyQMOM is moment-realizable. To overcome this, we introduce novel limiters that rigorously guarantee that the computed solution does not leave the convex set of realizable solutions, thus guaranteeing the hyperbolicity of the system. We develop positivity-preserving limiters in both the prediction and correction steps and an oscillation limiter that damps unphysical oscillations near shocks. We also develop a novel extension of this scheme to include a BGK collision operator; the proposed method is shown to be asymptotic-preserving in the high-collision limit. The HyQMOM and the HyQMOM-BGK solvers are verified on several test cases, demonstrating high-order accuracy on smooth problems and shock-capturing capability on problems with shocks. The asymptotic-preserving property of the HyQMOM-BGK solver is also numerically verified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call