Abstract
The paper is concerned with development of an accurate and effective positivity-preserving high-order compact difference method for solving the Keller-Segel chemotaxis model, which is a kind of nonlinear parabolic-parabolic system in mathematical biology. Firstly, a stiffly-stable five-step fourth-order fully implicit compact difference scheme is proposed. The new scheme not only has fourth-order accuracy in the spatial direction, but also has fourth-order accuracy in the temporal direction, and the computational strategy for the nonlinear chemotaxis term is provided. Then, a positivity-preserving numerical algorithm is presented, which ensures the non-negativity of cell density at all time without accuracy loss. And a time advancement algorithm is established. Finally, the proposed method is applied to the numerical simulation for chemotaxis phenomena, and the accuracy, stability and positivity-preserving of the new scheme are validated with several numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.