Abstract

General linear functional differential equations with infinite delay are considered. We first give an explicit criterion for positivity of the solution semigroup of linear functional differential equations with infinite delay and then a Perron‐Frobenius type theorem for positive equations. Next, a novel criterion for the exponential asymptotic stability of positive equations is presented. Furthermore, two sufficient conditions for the exponential asymptotic stability of positive equations subjected to structured perturbations and affine perturbations are provided. Finally, we applied the obtained results to problems of the exponential asymptotic stability of Volterra integrodifferential equations. To the best of our knowledge, most of the results of this paper are new.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.