Abstract

The recent progress optimization theory, due to a novel synthesis of real algebraic geometry and moment problems techniques, can naturally be reduced to positivity certificates for polynomial functions defined on basic semi-algebraic sets. There are however classical problems of applied mathematics which require exact positivity criteria for non-polynomial functions, such as splines, wavelets, periodic or almost periodic functions. While we do not lack fine analysis results referring to the positivity of such functions, traditionally stated in terms of Fourier-Laplace transforms type, the algebraic machinery of modern optimization theory based on polynomial algebra fails when applied to this more general context. A notorious example being the stability problem of differential equations with delays in the argument. In all these cases, the exact algebraic certificates must be complemented by approximation theory results. Without aiming at completeness, the present chapter offers a glimpse at a series of specific non-polynomial optimization problems, by identifying in every instance the specific results needed to run a robust algebraic relaxation scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.