Abstract

The group testing approach, which achieves significant cost reduction over the individual testing approach, has received a lot of interest lately for massive testing of COVID-19. Many studies simply assume samples mixed in a group are independent. However, this assumption may not be reasonable for a contagious disease like COVID-19. Specifically, people within a family tend to infect each other and thus are likely to be positively correlated. By exploiting positive correlation, we make the following two main contributions. One is to provide a rigorous proof that further cost reduction can be achieved by using the Dorfman two-stage method when samples within a group are positively correlated. The other is to propose a hierarchical agglomerative algorithm for pooled testing with a social graph, where an edge in the social graph connects frequent social contacts between two persons. Such an algorithm leads to notable cost reduction (roughly 20–35%) compared to random pooling when the Dorfman two-stage algorithm is applied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.