Abstract
Streamers are rapidly extending ionized finger-like structures that dominate the initial breakdown of large gas volumes in the presence of a sufficiently strong electric field. Their macroscopic parameters are described by simple scaling relations, where the densities of electrons and of excited molecules in the active streamer front scale as the square of the density of the neutral gas. In this work we estimate the absolute density of nitrogen molecules, excited to the C3Πu state that emit photons in the 2P–N2 band, by radiometrically calibrated short exposure intensified imaging. We test several pressures (100, 200 and 400 mbar) in artificial air at room temperature. Our results provide a first confirmation for the scaling of the density of excited species with the gas density. The method proposed here is particularly suitable to characterize the excitation densities in sprite streamers in the atmosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.