Abstract

Abstract A variant of Li–Tam theory, which associates to each end of a complete Riemannian manifold a positive solution of a given Schrödinger equation on the manifold, is developed. It is demonstrated that such positive solutions must be of polynomial growth of fixed order under a suitable scaling invariant Sobolev inequality. Consequently, a finiteness result for the number of ends follows. In the case when the Sobolev inequality is of particular type, the finiteness result is proven directly. As an application, an estimate on the number of ends for shrinking gradient Ricci solitons and submanifolds of Euclidean space is obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call