Abstract

In this paper, we study the existence and uniqueness of positive solutions for a class of a fractional differential equation system of Riemann–Liouville type on infinite intervals with infinite-point boundary conditions. First, the higher-order equation is reduced to the lower-order equation, and then it is transformed into the equivalent integral equation. Secondly, we obtain the existence and uniqueness of positive solutions for each fixed parameter λ>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\lambda >0$\\end{document} by using the mixed monotone operators fixed-point theorem. The results obtained in this paper show that the unique positive solution has good properties: continuity, monotonicity, iteration, and approximation. Finally, an example is given to demonstrate the application of our main results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call