Abstract

We consider a Kirchhoff problem of Brezis–Nirenberg type in a smooth bounded domain of R4 with Dirichlet boundary conditions. Our approach, novel in this framework and based upon approximation arguments, allows us to cope with the interaction between the higher order Kirchhoff term and the critical nonlinearity, typical of the dimension four. We derive several existence results of positive solutions, complementing and improving earlier results in the literature. In particular, we provide explicit bounds of the parameters b and λ coupled, respectively, with the higher order Kirchhoff term and the subcritical nonlinearity, for which the existence of solutions occurs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.