Abstract

We consider the generalized continuous-time Lyapunov equation: A*XB + B*XA = -Q, where Q is an N x N Hermitian positive definite matrix and A,B are arbitrary N x N matrices. Under certain conditions, using a coupled fixed point theorem du to Bhaskar and Lakshmikantham combined with the Schauder fixed point theorem, we establish an existence and uniqueness result of Hermitian positive definite solution to such equation. Moreover, we provide an iteration method to find convergent sequences which converge to the solution if one exists. Numerical experiments are presented to illustrate our theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.