Abstract
Consider a smooth projective family of canonically polarized complex manifolds over a smooth quasi-projective complex base Y ∘ , and suppose the family is non-isotrivial. If Y is a smooth compactification of Y ∘ , such that D:=Y∖Y ∘ is a simple normal crossing divisor, then we can consider the sheaf of differentials with logarithmic poles along D. Viehweg and Zuo have shown that for some m>0, the m th symmetric power of this sheaf admits many sections. More precisely, the m th symmetric power contains an invertible sheaf whose Kodaira-Iitaka dimension is at least the variation of the family. We refine this result and show that this “Viehweg-Zuo sheaf” comes from the coarse moduli space associated to the given family, at least generically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.