Abstract
If K is a field and char K ≠ 2, then an element α ϵ K is a sum of squares in K if and only if α ⩾ 0 for every ordering of K. This is the famous theorem of Artin and Landau. It has been generalized to symmetric matrices over K by D. Gondard and P. Ribenboim. They have also shown that Artin's theorem on positive definite rational functions has a suitable extension to positive definite matrix functions. In this paper we attain two goals. First, we show that similar theorems are valid for Hermitian matrices instead of symmetric ones. Second, we simplify D. Gondard and P. Ribenboim's proof of their second theorem and strengthen it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.