Abstract

BackgroundTransitions from marine to intertidal and terrestrial habitats resulted in a significant adaptive radiation within the Panpulmonata (Gastropoda: Heterobranchia). This clade comprises several groups that invaded the land realm independently and in different time periods, e.g., Ellobioidea, Systellomatophora, and Stylommatophora. Thus, mitochondrial genomes of panpulmonate gastropods are promising to screen for adaptive molecular signatures related to land invasions.ResultsWe obtained three complete mitochondrial genomes of terrestrial panpulmonates, i.e., the ellobiid Carychium tridentatum, and the stylommatophorans Arion rufus and Helicella itala. Our dataset consisted of 50 mitogenomes comprising almost all major panpulmonate lineages. The phylogenetic tree based on mitochondrial genes supports the monophyly of the clade Panpulmonata. Terrestrial lineages were sampled from Ellobioidea (1 sp.) and Stylommatophora (9 spp.). The branch-site test of positive selection detected significant non-synonymous changes in the terrestrial branches leading to Carychium (Ellobiodea) and Stylommatophora. These convergent changes occurred in the cob and nad5 genes (OXPHOS complex III and I, respectively).ConclusionsThe convergence of the non-synonymous changes in cob and nad5 suggest possible ancient episodes of positive selection related to adaptations to non-marine habitats. The positively selected sites in our data are in agreement with previous results in vertebrates suggesting a general pattern of adaptation to the new metabolic requirements. The demand for energy due to the colonization of land (for example, to move and sustain the body mass in the new habitat) and the necessity to tolerate new conditions of abiotic stress may have changed the physiological constraints in the early terrestrial panpulmonates and triggered adaptations at the mitochondrial level.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-016-0735-8) contains supplementary material, which is available to authorized users.

Highlights

  • Transitions from marine to intertidal and terrestrial habitats resulted in a significant adaptive radiation within the Panpulmonata (Gastropoda: Heterobranchia)

  • Mitochondrial genomes of euthyneuran gastropods represent a promising dataset to screen for adaptive signatures related to water-to-land transitions

  • The cluster cox2-atp8atp6 is conserved among other gastropods and cephalopods [20]

Read more

Summary

Results

We obtained three complete mitochondrial genomes of terrestrial panpulmonates, i.e., the ellobiid Carychium tridentatum, and the stylommatophorans Arion rufus and Helicella itala. Our dataset consisted of 50 mitogenomes comprising almost all major panpulmonate lineages. The phylogenetic tree based on mitochondrial genes supports the monophyly of the clade Panpulmonata. Terrestrial lineages were sampled from Ellobioidea (1 sp.) and Stylommatophora (9 spp.). The branch-site test of positive selection detected significant non-synonymous changes in the terrestrial branches leading to Carychium (Ellobiodea) and Stylommatophora. These convergent changes occurred in the cob and nad genes (OXPHOS complex III and I, respectively)

Conclusions
Background
Results and discussion
Methods
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.