Abstract
Positive selection of high-affinity B cells within germinal centers (GCs) drives affinity maturation of antibody responses. Here, we examined the mechanism underlying the parallel transition from immunoglobulin M (IgM) to IgG. Early GCs contained mostly unswitched IgM+ B cells; IgG+ B cells subsequently increased in frequency, dominating GC responses 14-21days after antigen challenge. Somatic hypermutation and generation of high-affinity clones occurred with equal efficiency among IgM+ and IgG+ GC B cells, and inactivation of Ig class-switch recombination did not prevent depletion of IgM+ GC B cells. Instead, high-affinity IgG+ GC B cells outcompeted high-affinity IgM+ GC B cells via a selective advantage associated with IgG antigen receptor structure but independent of the extended cytoplasmic tail. Thus, two parallel forms of GC B-cell-positive selection, based on antigen receptor variable and constant regions, respectively, operate in tandem to ensure high-affinity IgG antibodies predominate in mature serum antibody responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.