Abstract

As a generalisation of the well-known result of Perron and Frobenius, it was shown by Rothblum [13] and independently by Richman and Schneider [12] that every nonzero matrix with non-negative entries has a basis of the root space corresponding to the maximal eigenvalue, represented by root vectors with non-negative entries. Krein and Rutman [9] showed that a positive compact nonquasinilpotent operator on a Banach lattice has a positive eigenvector corresponding to its spectral radius. As an extension of both results, we give sufficient conditions on such an operator in order that its spectral subspace corresponding to its spectral radius has a basis made exclusively of positive root vectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.