Abstract
In this paper, we construct a new family of generalization of the positive representations of split-real quantum groups based on the degeneration of the Casimir operators acting as zero on some Hilbert spaces. It is motivated by a new observation arising from modifying the representation in the simplest case of Uq(sl(2,R))\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {U}_q(\\mathfrak {sl}(2,\\mathbb {R}))$$\\end{document} compatible with Faddeev’s modular double, while having a surprising tensor product decomposition. For higher rank, the representations are obtained by the polarization of Chevalley generators of Uq(g)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {U}_q(\\mathfrak {g})$$\\end{document} in a new realization as universally Laurent polynomials of a certain skew-symmetrizable quantum cluster algebra. We also calculate explicitly the Casimir actions of the maximal An-1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$A_{n-1}$$\\end{document} degenerate representations of Uq(gR)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {U}_q(\\mathfrak {g}_\\mathbb {R})$$\\end{document} for general Lie types based on the complexification of the central parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.