Abstract

The neural basis of positive reinforcement is often studied in the laboratory using intracranial self-stimulation (ICSS), a simple behavioral model in which subjects perform an action in order to obtain exogenous stimulation of a specific brain area. Recently we showed that activation of ventral tegmental area (VTA) dopamine neurons supports ICSS behavior, consistent with proposed roles of this neural population in reinforcement learning. However, VTA dopamine neurons make connections with diverse brain regions, and the specific efferent target(s) that mediate the ability of dopamine neuron activation to support ICSS have not been definitively demonstrated. Here, we examine in transgenic rats whether dopamine neuron-specific ICSS relies on the connection between the VTA and the nucleus accumbens (NAc), a brain region also implicated in positive reinforcement. We find that optogenetic activation of dopaminergic terminals innervating the NAc is sufficient to drive ICSS, and that ICSS driven by optical activation of dopamine neuron somata in the VTA is significantly attenuated by intra-NAc injections of D1 or D2 receptor antagonists. These data demonstrate that the NAc is a critical efferent target sustaining dopamine neuron-specific ICSS, identify receptor subtypes through which dopamine acts to promote this behavior, and ultimately help to refine our understanding of the neural circuitry mediating positive reinforcement.

Highlights

  • Actions that lead to beneficial outcomes are more likely to be repeated than those that do not

  • We found that activation of the ventral tegmental area (VTA) dopamine neuron projection to the nucleus accumbens (NAc) was sufficient to support intracranial self-stimulation (ICSS), and that ICSS behavior mediated by VTA dopamine neurons was significantly reduced by antagonism of either D1 or D2Rs in the NAc

  • Our data demonstrate that the dopaminergic projection to the NAc causally contributes to positive reinforcement

Read more

Summary

Introduction

Actions that lead to beneficial outcomes are more likely to be repeated than those that do not. This process, whereby the probability of a behavioral response increases as a consequence of the outcome of that response, is referred to as positive reinforcement. ICSS is a simple behavioral model that distills positive reinforcement to its minimum neural elements. A recent study used genetically-targeted channelrhodopsin-2 (ChR2) to activate VTA dopamine neurons and confirmed that dopamine neurons are sufficient to drive vigorous ICSS [3], consistent with a rich literature demonstrating that VTA dopamine neurons play critical roles in learned appetitive behaviors [4,5]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.