Abstract

This paper considers the problem of positive real control for two-dimensional (2-D) discrete systems described by the Roesser model and also discrete linear repetitive processes, which are another distinct sub-class of 2-D linear systems of both systems theoretic and applications interest. The purpose of this paper is to design a dynamic output feedback controller such that the resulting closed-loop system is asymptotically stable and the closed-loop system transfer function from the disturbance to the controlled output is extended strictly positive real. We first establish a version of positive realness for 2-D discrete systems described by the Roesser state space model, then a sufficient condition for the existence of the desired output feedback controllers is obtained in terms of four LMIs. When these LMIs are feasible, an explicit parameterization of the desired output feedback controllers is given. We then apply a similar approach to discrete linear repetitive processes represented in their equivalent 1-D state-space form. Finally, we provide numerical examples to demonstrate the applicability of the approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.