Abstract

AbstractEcological consequences of the increased input of allochthonous and autochthonous organic matter (OM) remains unknown in saline lakes. Here, we reported microbial mineralization of algal and grass OM (represented by autochthonous and allochthonous OM, respectively) in lake sediments with different salinity (1, 40, and 120 g L−1). The addition of algal and grass OM significantly increased the CO2 production rates in the studied sediments. Algal and grass OM input can induce positive priming effect (PE). PE intensity induced by grass OM input was significantly higher than that by algal OM input. PE intensity induced by algal and grass OM input decreased with increasing salinity. Bacterial taxa affiliated with Actinomycetia, Alphaproteobacteria, Bacilli, Bacteroidia, Clostridia, and Gammaproteobacteria played important roles in driving PE generation in the studied sediments. Our finding suggested that the PEs induced by allochthonous and autochthonous OM should be considered in saline lakes that are intensively influenced by climate change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call