Abstract

Structure-based computational protein design (CPD) plays a critical role in advancing the field of protein engineering. Using an all-atom energy function, CPD tries to identify amino acid sequences that fold into a target structure and ultimately perform a desired function. The usual approach considers a single rigid backbone as a target, which ignores backbone flexibility. Multistate design (MSD) allows instead to consider several backbone states simultaneously, defining challenging computational problems. We introduce efficient reductions of positive MSD problems to Cost Function Networks with two different fitness definitions and implement them in the Pompd (Positive Multistate Protein design) software. Pompd is able to identify guaranteed optimal sequences of positive multistate full protein redesign problems and exhaustively enumerate suboptimal sequences close to the MSD optimum. Applied to nuclear magnetic resonance and back-rubbed X-ray structures, we observe that the average energy fitness provides the best sequence recovery. Our method outperforms state-of-the-art guaranteed computational design approaches by orders of magnitudes and can solve MSD problems with sizes previously unreachable with guaranteed algorithms. https://forgemia.inra.fr/thomas.schiex/pompd as documented Open Source. Supplementary data are available at Bioinformatics online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.