Abstract
We develop a duality for (modal) lattices that need not be distributive, and use it to study positive (modal) logic beyond distributivity, which we call weak positive (modal) logic. This duality builds on the Hofmann, Mislove and Stralka duality for meet-semilattices. We introduce the notion of Π1-persistence and show that every weak positive modal logic is Π1-persistent. This approach leads to a new relational semantics for weak positive modal logic, for which we prove an analogue of Sahlqvist's correspondence result.1
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.