Abstract

Abstract We prove a positive mass theorem for spin initial data sets $(M,g,k)$ that contain an asymptotically flat end and a shield of dominant energy (a subset of $M$ on which the dominant energy scalar $\mu -|J|$ has a positive lower bound). In a similar vein, we show that for an asymptotically flat end $\mathcal{E}$ that violates the positive mass theorem (i.e., $\textrm{E} < |\textrm{P}|$), there exists a constant $R>0$, depending only on $\mathcal{E}$, such that any initial data set containing $\mathcal{E}$ must violate the hypotheses of Witten’s proof of the positive mass theorem in an $R$-neighborhood of $\mathcal{E}$. This implies the positive mass theorem for spin initial data sets with arbitrary ends, and we also prove a rigidity statement. Our proofs are based on a modification of Witten’s approach to the positive mass theorem involving an additional independent timelike direction in the spinor bundle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.